Competition between neighboring topogenic signals during membrane protein insertion into the ER.
نویسندگان
چکیده
To better define the mechanism of membrane protein insertion into the membrane of the endoplasmic reticulum, we measured the kinetics of translocation across microsomal membranes of the N-terminal lumenal tail and the lumenal domain following the second transmembrane segment (TM2) in the multispanning mouse protein Cig30. In the wild-type protein, the N-terminal tail translocates across the membrane before the downstream lumenal domain. Addition of positively charged residues to the N-terminal tail dramatically slows down its translocation and allows the downstream lumenal domain to translocate at the same time as or even before the N-tail. When TM2 is deleted, or when the loop between TM1 and TM2 is lengthened, addition of positively charged residues to the N-terminal tail causes TM1 to adopt an orientation with its N-terminal end in the cytoplasm. We suggest that the topology of the TM1-TM2 region of Cig30 depends on a competition between TM1 and TM2 such that the transmembrane segment that inserts first into the ER membrane determines the final topology.
منابع مشابه
Membrane topology and insertion of membrane proteins: search for topogenic signals.
Integral membrane proteins are found in all cellular membranes and carry out many of the functions that are essential to life. The membrane-embedded domains of integral membrane proteins are structurally quite simple, allowing the use of various prediction methods and biochemical methods to obtain structural information about membrane proteins. A critical step in the biosynthetic pathway leadin...
متن کاملEndoplasmic Reticulum Quality Control of Oligomeric Membrane Proteins: Topogenic Determinants Involved in the Degradation of the Unassembled Na,K-ATPase a Subunit and in Its Stabilization by b Subunit Assembly
The molecular nature of determinants that mediate degradation of unassembled, polytopic subunits of oligomeric membrane proteins and their stabilization after partner subunit assembly is largely unknown. Expressing truncated Na,K-ATPase a subunits alone or together with b subunits, we find that in unassembled a subunits neither the four N-terminal transmembrane segments acting as efficient alte...
متن کاملIntra-ER sorting of the peroxisomal membrane protein Pex3 relies on its luminal domain
Pex3 is an evolutionarily conserved type III peroxisomal membrane protein required for peroxisome formation. It is inserted into the ER membrane and sorted via an ER subdomain (the peroxisomal ER, or pER) to peroxisomes. By constructing chimeras between Pex3 and the type III ER membrane protein Sec66, we have been able to separate the signals that mediate insertion of Pex3 into the ER from thos...
متن کاملYeast genes controlling responses to topogenic signals in a model transmembrane protein.
Yeast protein insertion orientation (PIO) mutants were isolated by selecting for growth on sucrose in cells in which the only source of invertase is a C-terminal fusion to a transmembrane protein. Only the fraction with an exocellular C terminus can be processed to secreted invertase and this fraction is constrained to 2-3% by a strong charge difference signal. Identified pio mutants increased ...
متن کاملIntracellular protein topogenesis.
Concurrently with or shortly after their synthesis on ribosomes, numerous specific proteins are unidirectionally translocated across or asymmetrically integrated into distinct cellular membranes. Thereafter, subpopulations of these proteins need to be sorted from each other and routed for export or targeted to other intracellular membranes or compartments. It is hypothesized here that the infor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The FEBS journal
دوره 272 1 شماره
صفحات -
تاریخ انتشار 2005